Levothyroxine Absorption Test in the management of a patient with persistent hypothyroidism

Joana André Monteiro, Marta Ferreira, Miguel Pires, Célio Fernandes
Centro Hospitalar de Leiria

Introduction

Hypothyroidism refers to the common pathological condition of thyroid hormone deficiency. If untreated, it can lead to serious adverse health effects and ultimately death. Synthetic thyroxine has been used to treat hypothyroidism successfully since 1927. The optimal daily dose of 1.6–1.8 ug/body weight (kg) per day of levothyroxine (LT4) is an appropriate replacement dose. The absorption of oral LT4 occurs mostly in the jejunum and ileum (60–80% of the ingested dose). It is maximal when the stomach is empty and takes place within the first 3 hours of ingestion.

For patients who require larger doses of LT4 than expected, the underlying cause can be challenging to determine. Several factors must be considered: low patient compliance, reduced LT4 absorption from interfering dietary factors and medications, or gastrointestinal disorders contributing to malabsorption.

The most common cause of mal-absorption is poor or non-compliance with oral LT4 treatment by the patient. Compliance with treatment is the key to good outcomes in medical care. Medical non-compliance is a major public health problem that imposes a considerable financial burden upon modern healthcare systems and is also a source of ongoing frustration to doctors.

The concept of pseudo-malabsorption of thyroid hormones was first outlined in 1991 when it was described a factitious disorder due to patient non-compliance with the intention to deceive. An effective way to distinguish nonadherence from mal-absorption is to perform levothyroxine absorption testing (LAT).

This article aims to describe the LT4 absorption rapid test in a patient with hypothyroidism, highlighting its importance in the diagnosis of LT4 pseudo-malabsorption.

Keywords: Hypothyroidism. Levothyroxine. Pseudomalabsorption. Levothyroxine Absorption Test.

Case report

A 60-year-old woman with Graves’ hyperthyroidism was treated with radioactive iodine (9 mCi) at the age of 47. She subsequently developed hypothyroidism and was prescribed on LT4. Ever since, she has needed increasing doses of oral LT4, without reaching a euthyroid state.

The issue of nonadherence to treatment was raised several times over the years, but the patient reported to her doctor that she was consistently taking her medication. Her levothyroxine dosage was gradually increased to 1000µg daily in an attempt to achieve a serum thyroid-stimulating hormone (TSH) level within the normal range. Despite oral treatment with large doses of T4 LT4 had persistently remained elevated between 13.70 and 38.91 µUI/mL (reference range: 0.38 to 5.33). Although the different doses prescribed, there was no apparent relation with the variation in TSH levels. The patient had no clinical signs of malabsorption. Gastrointestinal, liver or pancreas diseases were excluded through laboratory investigations. Congestive heart failure and pregnancy were not present either. She had no other concomitant medication that could interfere with levothyroxine absorption or metabolism.

After careful consideration, with the patient’s consent, it was decided to conduct a LAT: she was advised to miss her breakfast and the test was performed with very close clinical monitoring. After baseline blood sampling for thyroid function testing [TSH, free thyroxine (FT4) and free triiodothyronine (FT3)], 1000µg of levothyroxine was administrated orally in a fasting state at 8 a.m. - 10 pills of 100µg - each tablet was taken separately, with an adequate amount of water and under close supervision. Repeated blood sampling for thyroid function tests, blood pressure and heart rate were taken at 0, 60, 120, 180 and 240 minutes after administration. The results are presented in the table below.

Table 1. LAT results: TSH (µUI/mL), FT4 (pmol/L) and FT3 (pmol/L) levels, heart rate rpm (HR), blood pressure mmHg (BP) on 0, 60, 120, 180 and 240 minutes.

<table>
<thead>
<tr>
<th>minutes</th>
<th>TSH</th>
<th>FT4</th>
<th>FT3</th>
<th>HR</th>
<th>BP</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>34.02</td>
<td>2.1</td>
<td>2.30</td>
<td>146/77</td>
<td>56</td>
</tr>
<tr>
<td>60</td>
<td>30.76</td>
<td>10.7</td>
<td>2.30</td>
<td>150/84</td>
<td>54</td>
</tr>
<tr>
<td>120</td>
<td>28.44</td>
<td>16.9</td>
<td>2.60</td>
<td>148/82</td>
<td>55</td>
</tr>
<tr>
<td>180</td>
<td>27.39</td>
<td>16.1</td>
<td>3.20</td>
<td>135/80</td>
<td>50</td>
</tr>
<tr>
<td>240</td>
<td>26.08</td>
<td>19.9</td>
<td>2.70</td>
<td>121/69</td>
<td>62</td>
</tr>
</tbody>
</table>

Although the different doses prescribed, there was no apparent relation with the variation in TSH levels. (Fig 1.)

The patient was also being treated for diabetes mellitus and dyslipidaemia. She was on LT4, metformin, sitagliptin, nateglinid and simvastatin. Her only complaint was hair loss and her physical examination was normal. Anamnesis excluded drug and dietary interference, and also previous gastrointestinal surgery.

The patient had no clinical signs of malabsorption. Gastrointestinal, liver or pancreas diseases were excluded through laboratory investigations. Congestive heart failure and pregnancy were not present either. She had no other concomitant medication that could interfere with levothyroxine absorption or metabolism.

After careful consideration, with the patient’s consent, it was decided to conduct a LAT: she was advised to miss her breakfast and the test was performed with very close clinical monitoring.

Correspondencia: joanaandremonteiro@gmail.com
Cómo citar este artículo: Monteiro JA, Ferreira M, Pires M, Fernandes C
Recibido: 31/12/2017; Aceptado: 20/01/2018
LAT with a 1000µg of levothyroxine showed a normal absorption of LT4 indicating that malabsorption was not the likely cause of resistant hypothyroidism in our patient.

This test proved poor adherence to treatment or pseudo-malabsorption.

Discussion

The daily use of oral LT4 is the most frequent treatment of hypothyroidism and is one of the most effective, inexpensive and safe hormone replacements in endocrinology. Although in some patients hypothyroidism persists despite therapy with high doses of levothyroxine\(^4\). In patients with persistently elevated TSH levels, there are a number of causes, which needs to be considered, including poor administration and pathological malabsorption conditions. However, the literature is not clear on the actual degree of malabsorption, in each malabsorptive condition\(^11\). In the majority of the cases, the combination of history and examination identifies biological causes of LT4 malabsorption. Therefore, before more detailed investigations, the issue of adherence needs to be addressed\(^2\).

Ain et al.\(^12\) introduced the term of pseudo-malabsorption after evaluating four cases of persistent hypothyroidism despite high oral doses of thyroid replacement therapy - the main characteristic of thyroxine pseudo-malabsorption is patient’s denial of poor compliance, which leads to difficulties in diagnosis and management.

The LAT is the primary method for distinguishing between non-compliance and true malabsorption. However, the performance of the test is non-uniform with the existence of various protocols in the literature but with no clarity on which one method is the most efficacious, sensitive and specific. The majority advocate a same-day dosage (1000-2000mcg) of LT4 orally and then measuring TSH and FT4 levels at 2 and possibly 4 and 6 hours, demonstrating a rise in FT4 and a fall in the TSH. An increase in FT4 is observed with a maximum level within the first 120min, known to be a normal time interval for absorption in the jejunum and ileum\(^4\). If the biochemical markers rise as expected, then this is indicative of normal gastrointestinal absorption for levothyroxine.
The side effects of a single high oral dose of levothyroxine are limited. None of the previously published cases presented with adverse events following ingestion. That is partially explained by the fact that T4 is tightly bound by circulating thyroxine-binding globulin and enters the tissues very slowly; also, T4 must be converted to T3 in order to be biologically active. This process is highly regulated and the increasing of FT4 is not followed by a significant rise in FT3. Our patient tolerated the oral test with 1000 μg of oral levothyroxine very well. A rise in serum FT4 was observed after ingestion associated with a decrease in TSH and without a significant rise in FT3.

After pseudo-malabsorption is identified, several strategies can be adopted to improve treatment outcomes for the future based on a closer understanding of the patients’ perspectives of their illness, lifestyle and health beliefs, rather than the perceptions and expectations of healthcare professionals. The improvement of doctor–patient relationship is very important. To improve the state of hypothyroidism two main prescriptions are possible: supervised weekly thyroxine replacement (the total weekly dose of LT4 given once per week) or parenteral administration (intramuscular or intravenous) of levothyroxine.

Once weekly administration of LT4 is safe and efficient and therefore a possible alternative to customary daily therapy. It is well tolerated, and there is no evidence of possible toxicity, including cardiac side effects – our patient didn’t raise her heart rate or her blood pressure during the test.

This patient was therefore prescribed on one dose of LT4 weekly. The FT4 and TSH serum levels normalized and the patient continued to do well during follow-up.

In conclusion, pseudo-malabsorption is an important differential diagnosis in persistent hypothyroidism. It’s very important to be excluded to achieve therapeutic success. Levothyroxine absorption test is a simple, safe and useful tool in these cases.

References